Title (Robotyka)	Code 1010331151010330299
Field	Year / Semester
Control Engineering and Robotics	3/5
Specialty	Course
-	core
Hours	Number of credits
Lectures: 2 Classes: 2 Laboratory: - Projects / seminars: -	5
	Language
	polish

Lecturer:

dr inż. Jarosław Warczyński
Instytut Automatyki i Inżynierii Informatycznej
e-mail: jarslaw.warczynski@put.poznan.pl

Faculty:

Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań tel. (061) 665-2539, fax. (061) 665-2548 e-mail: office_deef@put.poznan.pl

Status of the course in the study program:

Obligatory course, Faculty of Electrical Engineering, field Control Engineering and Ro-botics.

Assumptions and objectives of the course:

Acquaintance of knowledge about robot control algorithms and about controlling robot interactions with environment .

Contents of the course (course description):

Statics of robots. Robot control systems: Independent joint control. Point-to?point mo-tion control. Path motion control. Inverse dynamics control. Computed torque feedfor-ward control Manipulator interaction with environment: Compliance control. Force con-trol with inner position loop. Force control with inner velocity loop. Hybrid position/force control. Impedance control. Adaptive robot control. Basics of the trajectory planning and robot programming.

Introductory courses and the required pre-knowledge:

Basic knowledge of differential and matrix calculus, theory of mechanisms automatic control, and computer science, foundations of robotics of the 4-th semester

Courses form and teaching methods:

Lectures and exercises supported by transparencies, slides, and films.

Form and terms of complete the course - requirements and assessment methods:

Examinations and exercises.

Basic Bibliography:

Additional Bibliography: